If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x+40=21x^2
We move all terms to the left:
11x+40-(21x^2)=0
determiningTheFunctionDomain -21x^2+11x+40=0
a = -21; b = 11; c = +40;
Δ = b2-4ac
Δ = 112-4·(-21)·40
Δ = 3481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3481}=59$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-59}{2*-21}=\frac{-70}{-42} =1+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+59}{2*-21}=\frac{48}{-42} =-1+1/7 $
| 12x-2+106=180 | | 7x-4=3x+ | | 13x+1+140=180 | | -y2+16y-14=0 | | 11x+1+100=180 | | b+10+3b=74 | | 3/5x-16=38 | | 3c+7=17 | | 18+4y=20 | | 7+5x-7x=17 | | -4.6=r+3.3 | | -5(x-2)=-112 | | 8(-2x-1)=25 | | -5(x+2=-112 | | 0.05n+0.10(2n-1)=1.9 | | y+1/6=-3/5 | | y+8/16=3/4 | | (2x-3)^2-(4x)^2/2x+8x/4=-9 | | (2x-3)^2-(4x)^2/2x=8x/4=-9 | | 36x+5+4x+5=90 | | x+(x+12)+(3x-9)=117 | | 1/3(15+9)=5(x+3) | | 9(14d+9)+4d=13(10d+6)+3 | | 0.5x-8=15 | | v/4-8=-20 | | 400=120*4j | | 36X+5+4x+5=180 | | a-17.2=17.3 | | 120*4j=400 | | 9(14d+9)+4=13(10d+6)+3 | | 2Xw=6.4 | | F(x)=-3x^2+2x-3 |